
Response time consistency of the GHOST force loop

A. E. Kirkpatrick and Jason Sze
School of Computing Science

Simon Fraser University
Burnaby, BC, V5A 1S6 Canada

{ted,jszea}@cs.sfu.ca

Abstract
The consistency with which Windows 2000 invokes the GHOST force loop was measured on a
900 MHz machine. The median loop time was accurate at 1 ms. However, as the computation
in the force loop increased to 500 ms, the consistency of the loop decreased up to 25%.
Inaccuracies in loop times were also introduced by higher network load.

Introduction
The quality of the force display is an important factor in haptic applications1. The device,
control algorithms, and application program all contribute to the quality of the display. All these
components run in cooperation with a silent partner, the operating system kernel. The kernel
provides the environment in which the device driver runs and the low-level facilities by which
the driver communicates with the hardware. It provides the file system, network, interprocess
communication, and virtual memory facilities upon which the application is based. Most
importantly, the kernel scheduler determines when the application will refresh the force and
graphic displays and the world model.
While much work has been done to locate and eliminate inadequacies in force display, control
algorithm, and application design, we are not aware of any research on the effect of the operating
system algorithms on the performance of haptic systems. To date, researchers and application
programmers alike have presumed that the operating system is “good enough”. In this paper, we
consider the effects the operating system scheduler might have on this performance. We begin
by considering the possible mechanisms by which the scheduler might impact system
performance. We point out that an important measure of system performance should be the
distribution of response times for the force refresh loop. We then present some initial
measurements of the response time distribution for a particular PHANTOM configuration, a
single-processor system running Windows 2000 and GHOST 3.1. We conclude with a
discussion of the implications of these results for haptic applications.

1 In a talk given at PUG ‘01, the first author emphasized the importance of separating our terms
for display technologies—forces and graphics—from the haptic and visual systems, the human
perceptual systems interpreting those displays. In keeping with that principle, we shall refer to
“force displays”, the “force rendering loop”, and so forth. However, given the established usage
of such broader terms as “haptic application” and “haptic programming”, we retain them here.

The operating system scheduler and the structure of a haptic
application
Haptic programming is inherently multi-threaded. The classic structure for haptic applications
consists of two loops, one computing the force display based upon the current cursor position
and the location of objects in the world model, the second computing the graphic display based
upon the same information. Because the human visual and tactual receptors have differing
response rates, these loops run at different rates. Currently, SensAble’s GHOST software
architecture sets the force loop at 1000 Hz. Graphics loops typically run between 10 and 40 Hz.
More importantly, because the consistency requirements of the tactual mechanoreceptors are
more stringent than for the visual receptors, the force refresh loop is typically run at a higher
priority than the graphics loop.
An important but little discussed consequence of this multithreaded architecture is that it makes
the operating system an inherent component of the application, with operating system scheduling
algorithms limiting the application’s quality of service. The application (or, in the case of
GHOST users, the application framework) may request a theoretical rate of force display but it is
the scheduler that determines the actual rate. This scheduler is itself a complex algorithm,
particularly when considered in terms of its interactions with the other services provided by the
operating system. Consequently, it is imperative for haptic programmers to have clear
descriptions of the limits of the scheduler they are using. In this paper, we begin developing such
a description.

The scheduler as a source of noise in the force signal
The fundamental force computation is a read-compute-write loop. For each tic of the clock, the
application reads the current location of the cursor, computes forces at the tip based upon its
interactions with nearby objects, then writes the forces back to the motors of the display. The
scheduler determines when each iteration of the loop occurs.
There are two possible kinds of noise the scheduler can introduce into the force signal. First, it
can invoke the force calculation consistently slower or faster than the stated rate. We refer to
this effect as drift. Second, the time between successive invocations may vary. We call this
effect spread. We note that some degree of drift and spread is inevitable. The important
question is their magnitude.
Spread and drift have several consequences. Irregular invocations of the force loop can create
irregularities in changes to the displayed force. If the application assumes time between loop
iterations is constant, timing spread will produce inaccurate force computations. This is
potentially most severe for algorithms that use higher-order terms such as velocity and
acceleration. Longer delays between force computations can produce large force changes when
the cursor is penetrating a rigid surface. Extreme force changes can cause the drivers to shut
down the computation. Finally, irregular force computations can produce inaccurate high-
frequency forces. In the worst case, small surface features may be omitted altogether.
The ultimate metric of the above effects is psychophysical: Does the human user perceive the
irregularities in a given application? However, such a metric incorporates far more than the
operating system effects. For the purpose of measuring the specific contribution of operating
system delay, we instead directly timed the invocations of the force loop.

Method
Timing loop consistency was measured using a skeletal GHOST application. The virtual world
consisted of a single object located at the origin of the coordinate system. The object had a
bounding volume far larger than the PHANTOM working area, causing its collisionDetect ()
method to be called for every invocation of the force loop. The collisionDetect () routine stored
the time of its invocation in an array. Time was recorded using the Windows
HighPerformanceTimer facility. This timer operates under ten ms accuracy, more than good
enough for accurate measurement of the one ms force loop. The collisionDetect () routine
optionally executed a busy delay loop. The delay simulated varying degrees of force
computation. The collisionDetect () routine completed by returning zero, indicating no collision
with the object.
The body of the application consisted of a graphics loop executed by a Windows timer interrupt
every ten ms. This loop also recorded its execution time but this data is not reported here. The
graphics loop displayed the PHANTOM cursor as an OpenGL sphere but did no other rendering.
This sample application was run for one minute. The PHANTOM was not touched during this
time. As there were no objects for the tip to contact in this virtual world, moving the
PHANTOM would have had no effect on the results. After the minute elapsed, the differences
between the 60,000 successive force loop invocations were computed and written to a file.
Timings were collected under various conditions. In the unloaded condition, no other
applications were active. In successive runs, the force loop delay was varied from 0 to 700 ms in
increments of 100 ms, with a final run of 750 ms. In the loaded condition, a network-intensive
application was run simultaneously. The network application opened up ten TCP connections
and received an 888 byte message from each connection every ms, for a total throughput of
8.9!Mb/s. This application created conditions of high network load. The GHOST timing
application was run concurrently, again with force loop delays ranging from 0 to 750 ms.
All timing runs were performed on a Windows 2000 (release 5.00.2195, SP2) system with
GHOST 3.1. The hardware was a single-processor AMD 900 MHz Thunderbird with 500 Mb of
PC-133 SDRAM and an nVidia GeForce2 card.

Results
To measure the extent of drift and spread, the .01, .05, .50, .95, and .99 quantiles were computed
for the 59,999 elapsed loop times for each run. For all runs, the median (.50 quantile) was 1.00
ms. This configuration of Windows has effectively no drift under the tested conditions.
To .01, .05, .95, and .99 quantiles are a good measure of the spread of the loop times. The inner
.05 to .95 band indicates the range of 90% of the loop times. A further 8% of the loop times lie
in the outer band, outside the .05 -.95 range but within the .01 and .99 quantiles. Given a
uniform distribution of these times, on average one loop every 80 ms (12.5 Hz) would fall in the
outer 8% band. This frequency is within the detection range of human mechanoreceptors.
Figure 1 shows a plot of the .01, .05, .95, and .99 quantiles for the unloaded condition (solid
lines) and the loaded condition (dashed lines). The 90% band is tight, ±.03 ms. While the 90%
band is constant irrespective of the loop delay, the 95% band widens as the computation load of
the haptic loop increases, from ±.08 ms at the 0 ms delay to a negatively skewed interval (0.66 to

1.18 ms) at the 500 ms delay. Beyond 500 ms, the lower limit of the loop time becomes bounded
from below by the loop delay itself and the range shrinks, although the upper limit remains high.
The loaded condition has a wider spread than the unloaded condition but is much less affected by
increasing loop delay. The 90% band is wider (±.08 ms) than for the unloaded condition. The
95% band is relatively constant with a more symmetric interval (.72 to 1.21 ms) of about the
same width as the unloaded condition. Unlike the 95% band for the unloaded condition,
however, the loaded band is basically constant across the range of delays, with only a slight
decrease in the lower limit.

Figure 1: .01 (lowest line), .05, .95, and .99 (highest line) quantiles for unloaded (solid lines)
and loaded (dashed lines) conditions at various levels of delay.

Conclusions
This system configuration exhibited generally stable performance in the consistency of its force
loop. However, even for conditions of minimal load, there was sufficient spread to the response
times to have humanly perceptible effects. Developers of haptic applications with exacting
performance standards may wish to account for instabilities introduced by the operating system
scheduling algorithms. Of course, the range of haptic configurations is vast. The operating
system and GHOST release used in this initial study have both been superceded by more recent
versions. Multiprocessor configurations will show less direct interference but synchronization of
memory accesses between the processors may introduce new problems. In general, we suggest
that the operating system scheduler will have potential impact on the performance of haptic
applications for typical configurations of the foreseeable future. We plan to extend this work to
measure the performance of more elaborate configurations. We also plan to examine the
psychophysical consequences of the variability introduced by the operating system.

Acknowledgements
Funding for this work was generously provided by NSERC and a Simon Fraser University
President’s Research Grant.

